Association of disomic chromosome loss with EMS-induced conversion in yeast.
نویسنده
چکیده
Experimental tests with the yeast Saccharomyces cerevisiae of a previously proposed model suggesting a causal relationship between disomic chromosome loss (n + 1 leads to n) and centromere-adjacent mitotic gene conversion were performed. Disomic haploid cells heteroallelic at two loci on the left arm of chromosome III were exposed to ethyl methanesulfonate (EMS) under nonlethal conditions; EMS-induced prototrophic gene convertants were selected and tested for coincident chromosome loss. The principal results are: (1) The frequency of chromosome loss among EMS-induced gene convertants selected to arise near the centromere is markedly enhanced over basal levels and remains constant, independent of EMS exposure. There is little such enhancement among EMS-induced convertants selected to arise far from the centromere. (2) Chromosome loss is almost completely associated with induced conversion of the centromere-proximal allele at the centromere-adjacent heteroallelic locus. This result is identical to (and confirms) results found previously for spontaneous loss-associated conversion. (3) The conversion polarity at the centromere-adjacent locus among unselected (nonloss-associated) induced or spontaneous mitotic convertants is identical to that among meiotic convertants and markedly favors the contromere-distal allele. These findings are wholly consistent with, and strengthen, the hypothesis that structural involvement of centromeric regions in nearby recombinational events may interfere with proper segregational function and lead to mitotic chromosome loss.
منابع مشابه
Association of chromosome loss with centromere-adjacent mitotic recombination in a yeast disomic haploid.
Experiments designed to characterize the association between disomic chromosome loss and centromere-adjacent mitotic recombination were performed. Mitotic gene convertants were selected at two heteroallelic sites on the left arm of disomic chromosome III and tested for coincident chromosome loss. The principal results are: (1) Disomic chromosome loss is markedly enhanced (nearly 40-fold) over b...
متن کاملMitotic chromosome loss in a disomic haploid of Saccharomyces cerevisiae.
Experiments designed to characterize the incidence of mitotic chromosome loss in a yeast disomic haploid were performed; The selective methods employed utulize the non-mating property of strains disomic for linkage group III and heterozygous at the mating type locus. The principal findings are: (1) The grequency of spontaneous chromosome loss in the disome is of the order 10- minus 4 per cell; ...
متن کاملAllelic and ectopic interactions in recombination-defective yeast strains.
Ectopic recombination in the yeast Saccharomyces cerevisiae has been investigated by examining the effects of mutations known to alter allelic recombination frequencies. A haploid yeast strain disomic for chromosome III was constructed in which allelic recombination can be monitored using leu2 heteroalleles on chromosome III and ectopic recombination can be monitored using ura3 heteroalleles on...
متن کاملHigh-Resolution Genome-Wide Analysis of Irradiated (UV and γ-Rays) Diploid Yeast Cells Reveals a High Frequency of Genomic Loss of Heterozygosity (LOH) Events
In diploid eukaryotes, repair of double-stranded DNA breaks by homologous recombination often leads to loss of heterozygosity (LOH). Most previous studies of mitotic recombination in Saccharomyces cerevisiae have focused on a single chromosome or a single region of one chromosome at which LOH events can be selected. In this study, we used two techniques (single-nucleotide polymorphism microarra...
متن کاملAneuploidy shortens replicative lifespan in Saccharomyces cerevisiae
Aneuploidy and aging are correlated; however, a causal link between these two phenomena has remained elusive. Here, we show that yeast disomic for a single native yeast chromosome generally have a decreased replicative lifespan. In addition, the extent of this lifespan deficit correlates with the size of the extra chromosome. We identified a mutation in BUL1 that rescues both the lifespan defic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 96 3 شماره
صفحات -
تاریخ انتشار 1980